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Abstract - This paper discusses the various approaches that can be taken to solve the timetable generation problem. Timetable 

generation is basically a constraint satisfaction problem. The methods discussed in this paper are capable of handling both soft 

and hard constraints. Once the final timetable has been generated, teachers and students can access it through three different 

views i.e., class view, lab view and combined view of classes and labs. 
 

The Timetable Generation System aims at automating the process of timetable generation for the Computer Science and 

Engineering department of BMS College of Engineering, Bangalore. It takes the number of semesters, sections, subjects, labs 

and teachers as input and generates a timetable which satisfies all of the hard constraints. 
 

Index Terms - Course timetabling, Genetic Algorithm, Tabu Search, Iterative Local Search, GRASP.  

 

I. INTRODUCTION 

 

Even though most college administration work has been computerized, timetable scheduling is still done manually due to the difficulties 

involved. The manual timetable scheduling requires considerable time and effort. Timetabling is the allocation, of given resources to 

objects that are placed in space time, in such a way that they satisfy a desirable set of objectives. 

 

The college lecture-timetabling problem asks us to find some slots and classrooms which satisfy the constraints imposed on offered 

courses, lecturers, classrooms and so on. The problem is a combinatorial optimization problem belonging to NP-hard class where the 

computational time grows exponentially as the number of variables increases. 

 

Various approaches have been made in the past decade to solve the problem of constructing timetables for schools and colleges. In our 

paper this problem is formulated as a constraint satisfaction problem and we discuss the various approaches that are capable of handling 

both hard and soft constraints. 

 

Hard constraints cannot be violated under any circumstances. For example, two classes cannot be allocated to a single teacher at the 

same time period, two classes cannot be attended by a student at the same time, more than one class cannot be held at a room at the 

same time et cetera. 

 

Soft constraints are necessary but not absolutely critical. For example, a timetable must be made in such a way that a group of students 

don’t have to come to college to attend only one class. 

 

II. LITERATURE SURVEY 
 

There exist various timetable generation problems such as University Timetabling, Employee Timetabling, Sports Timetabling and 

Examination Timetabling. 
 
Carter and Laporte (1998) considered different categories to solve the timetabling problem. They are – Cluster method, Sequential 

method, Meta-Heuristics and Constraint Based method. Meta Heuristics is a higher level procedure which is used to provide good 

enough solutions for optimization problems. On some class of problems, they do not guarantee a globally optimum solution. This 

method is used when the classical methods are too slow or fail to give a solution. This is achieved at the cost of optimality and precision 

for speed. In this paper we consider the following Meta-Heuristic methods. 
 
 

 

A. Genetic Algorithm (GA) 

 

Genetic Algorithms (GA) was invented by John Holland and has described this idea in his book “Adaptation in natural and artificial 

systems” in the year 1975 [6]. 
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Genetic Algorithms are inspired by Darwin’s evolutionary theory. GA comes under the class of Evolutionary algorithms that use the 

principle of natural selection to derive a set of solutions towards the optimal solution. It is a search heuristic which generates solutions 

to optimization problems using techniques inspired by natural evolution like mutation, inheritance, crossover and selection. 

 

Here the algorithm is generally started with a set of candidate solutions called the population. Each solution in the initial population has 

a set of characteristics (its chromosomes or genotypes) which can be altered and mutated. Solutions from one population are taken and 

used to make another population, with a hope that the new population will be better than the old one [1]. Solutions are selected for 

breeding on the basis of their fitness. The fitness function usually identifies the number of constraints violated by a timetable. A 

timetable is said to be more fit if it violates less number of constraints. In the timetable generation problem, the population is a set of 

timetables maintained in memory. Each timetable is evaluated by finding the number of times it violates the constraints. Each timetable 

has an equal chance to participate in breeding. 

 

Algorithm 1: Genetic Algorithm GA ( ) 
 
[Start]Produce a random population of n chromosomes (suitable solutions for the problem) 

   
1) [Fitness] Compute the fitness f(x) of each chromosome x in the initial population. 

2) [New Population] Generate a new population by repeating the following steps until the new population is complete. 

(a) [Selection] Select two parent chromosomes from the existing population on the basis of their fitness. 
(Chromosomes with highest fitness are selected.) 

(b) [Crossover] Considering a crossover probability, crossover the parents to form new solution. 

(c) [Mutation] Considering a mutation probability, mutate new offspring at each locus (position in chromosome). 

(d) [Accepting] Add the new offspring in the new population. 

  3)     Use the newly generated population for further run of the algorithm. 

   4)     If the end condition is satisfied, return the existing best solution from the current population.   

  5)     [Loop] Go to step 2. 

 

The efficiency of the genetic algorithm mainly depends on the fitness function [20, 25]. Mutation and crossover are the two main parts 

of the algorithm. They are called the operators of GA. The task of Crossover is the realization of the deterministic search [5].  From the 

previously selected pool, two parent solutions are selected for breeding. The new solution is obtained by the method of crossover and 

mutation and shares many characteristics of the parent solution. New parents are selected for every new child and this process continues 

until a population of appropriate size is generated. Only the best solutions from the previous pool are selected for breeding, along with 

a small number of less fit solutions to ensure genetic diversity. The creation of new population can be stopped when a solution which 

satisfies the minimum criteria can be found. In our case, the process can be stopped when a timetable satisfying all the hard constraints 

is found. 

 

Advantages: Provides diverse values of solutions and reaches global maxima. Mutation is used to induce diversity. Saving best solution 

is helpful. 

 
Disadvantages: It is complex to implement.  

  
B. Tabu Search 
 

Fred Glover proposed the Tabu Search in 1986. Tabu search can be directly applied to virtually any kind of optimization problem. Tabu 

search technique is one of the popular local search method based on neighborhood search algorithm [2]. 
 
Tabu search basically avoids getting trapped at local maxima. That is why this search allows non-improving moves when it is trapped 

in local optima. Another advantage of Tabu Search method is that it prevents cycling back to the previously visited solutions by the use 

of memories thus creating more chances of improvement. 
 
Tabu search uses a search space which is the space of all possible solutions that can be considered. The search space could also simply 

be a set of feasible solutions to the problem. In Tabu search one of the basic elements is the “Tabu”. Tabus are used to prevent cycling 

while moving away from local optima and through non-improving moves. Tabus are also used to move away from the previously visited 
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portions of the search space and thus help in exploring other regions. Tabus are stored in a short term memory called the Tabu list. 

Usually the Tabu list is implemented as a circular list of a predefined length. The moves are considered as Tabu only for a certain 

number of iterations and this number is called the “tabu tenure”. At each iteration the Tabu tenure value is randomly chosen in the range 

of 0.25Tb to 0.5 Tb (Tb is the square root of the total number of courses). Also sometimes the best solution found so far using the Tabu 

search procedure may not actually be “the best”. This is because Tabus are too powerful that they might prohibit attractive moves even 

when there is no danger of using those moves. This may lead to overall stagnation of the search process. Thus a criterion called 

“Aspiration Criteria” allows canceling the Tabus. The simplest and most commonly used aspiration criterion is allowing a move, even 

if it is Tabu [17]. 
 
The overall quality of the timetable is evaluated based on a function of soft constraints’ violation called the objective function. 

 

The objective function f (q) is defined as: 

f (q) = ∑ wi qi  (1) 

 

where wi and qi are the weight and violation number of the i
th

 soft constraint, and i ranges from 1 to n (n is the total number of soft 

constraints). A neighborhood solution satisfies aspiration criterion if and only if f (Qnei) < f (Qbest) (Qbest is the best solution found 

so far). 

  

Algorithm 2 : Tabu search - F(x) 
 
1) Building an initial solution using greedy algorithm.  
 

(a) Non-preassigned courses are split into blocks and are assigned to appropriate courses.  
 

(b) Non-preassigned courses are assigned to appropriate rooms based on results of (1).  
 
2) Applying Tabu search algorithm to improve the initial solution.  
 
 
Some of the courses may be preassigned, that is their periods and rooms are predetermined by people, while the other courses are not. 
These preassigned courses are not re-scheduled again. 
 
The searching process is stopped when it meets one of the following criteria: 
 
The number of iterations passed is beyond a certain predefined number or when the best solution found so far satisfies all the constraints 

or when the number of consecutive unimproved iterations has reached a certain number [18]. 
 
The results of the timetable obtained from the Tabu Search algorithm shows significant improvements when compared to handmade 

results. Therefore, automated timetables obtained from Tabu Search algorithm are much better than handmade timetables due to the 

high improvement rate. 
 
Advantages: It is faster than any genetic algorithm and reaches local maxima. Also it avoids local optima. 
 
C. Iterative Local Search 
 
The optimization problems and combinatorial search are tackled by Local Search meta-heuristics are an emerging class of methods, 

which was recently proved to be very effective for a large number of combinatorial problems. 
 
The Local Search techniques are based on the iterative exploration of a solution space. At each repetition, the algorithm for Local Search 

moves from one solution to one of its “neighbors”, i.e., solutions that are (in some sense) close to the starting one. 
 
One major drawback of this family of techniques is the lack of robustness on a wide variety of problems. In actual fact, in so many 

cases, these kinds of methods guarantee finding good results in practicable run times, while in other cases Local Search techniques are 

caught in the local minima. 
 
Combination of several neighborhood structures is one of the alternative approaches [12, 13] to cope with local minima. 
 
A set of neighborhood operators are given such that for given collection of basic neighborhoods, a new compound neighborhood is 

automatically created and prescribe the strategies for its exploration. This approach is based Multi - Neighborhood Search. 
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Definition -The Course Timetabling problem 
 
If there are a set of x courses, C = {s1, . . . , sx}, a set of y periods, P = {1, . . . , y}, and a set of z rooms, R = {r1, . . . , rz}: each course si 

consists of ci lectures to be scheduled in distinct time periods, and is attended by p i pupils. Each room rj has a capacity cpj , expressed 

in terms of number of seats. There are also m groups of courses, T1, . . . ,Tm called curricula, such that there are common pupils for any 

pair of courses belonging to a curriculum T i .The output of the problem is an integer-valued x × y matrix M , such that Mik = j (with 1 

≤ j ≤ m) means that course si has a lecture in room rj at period k, and Mik = 0 means that course si has no class in period k. The matrix 

M is searched such that the hard constraints are compulsorily and the soft ones are almost satisfied and the violations are minimized. 
 
Hard constraints: (1) Lectures (2) Room Occupancy (3) Conflicts (4) Availabilities 

 

Soft constraints: (5) Minimum working days (6) Capacity of the room (7) Compactness of the Curriculum 

 

By using Local Search to solve a Course Timetabling problem [14] , first the basic Local Search entities should be defined, namely the 

cost function, the search space and the strategy for generating the initial solution. Search space consists of all the assignment matrices 

for which the constraints (1) and (4) hold. States for which the hard constraints (2) and (3) do not hold are allowed, but are considerably 

penalized within the cost function. 

 

The cost function is thus a weighted sum of the violations of the aforementioned hard constraints plus the violations of the soft 

constraints (6) – (7). The weight of constraint type (5) is the number of students without a seat, whereas the weight of constraint types 

(5) and (7) is fixed to 5 and 2, respectively, to reflect their relative importance in our institution. Furthermore, as sketched above, in 

order to give precedence to feasibility over the objectives, hard constraints are assigned the weight 100, which is a value greater than 

the maximum value of soft constraints violations. In detail, if we denote with fi(T ) the measure of violation of the constraint (i) we 

choose 

 

F(T ) = 1000 • (f2(T ) + f3(T )) + f5(T ) + f6(T ) + f7(T ).  (2) 

 

The initial solution is selected at random. A random matrix M is created which satisfies constrains (1) and (4). This is obtained by 

allotting each lecture of a course to an available period which is selected randomly, and to a random room, ignoring the fact whether 

the lectures are assigned to the same period [14]. 

 

Advantages: Gives good results in a few cases in practical run times. 

 

Disadvantages: Lack of robustness in a variety of problems. Also local search techniques can get stuck at local minima. 

 

D. Greedy Random Adaptive Search Procedure (GRASP) 
 

GRASP is a technique that is very efficient in the combinatorial optimization field of problem solving. It has been applied to various 

problems like spanning tree problems etc. It is a simple but yet very efficient. It can be used to construct good quality solutions and 

adapt for any timetabling problem with constraints that are similar. 
 

The typical GRASP method consists of two phases i.e. solution construction and solution improvement from which best solution that 

found is returned when the search procedure is terminated. The solution construction mechanism consists of two main ingredients: a 

dynamic constructive heuristic and randomization. 
 

For a solution that consists of a subset of a set of elements i.e. the solution components, a solution is made step by step by adding one 

new element at each step. The new element is picked at random from the Restricted Candidate List. At each step the heuristic values 

are updated, consequently changing the values at each step depending on the choices available. 
 

This is a dynamic construction heuristic unlike a static heuristic that assigns element scores before construction. 
 
Algorithm 3: Greedy Random Adaptive Search Procedure: GRASP ( ) 

 
s ←0 
 
% s denotes a partial solution in this case a←DetermineCandidateListLength () 
 
% definition of the RCL length While solution not complete 
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do 
 
RCLa← GenerateRestrictedCandidateList(s) x ←SelectElementAtRandom(RCLa) 
 
s ←sU{x} UpdateGreedyFunction(s) 
 
% update of the heuristic values end while. 
 
The above algorithm shows the Greedy randomized solution construction in which 'a' is the number of elements in the RCL and 
determines the strength of the heuristic bias. If a=1, it will be an extreme case in which the solution is the same as a deterministic Greedy 
heuristic. If a=n, the construction would be completely random, of course, as element chosen from the RCL is random. 
 
The second phase of Grasp if an improvement phase in which a basic local search algorithm can be used. 
 
Two conditions are essential for GRASP to be effective which are that firstly the construction phase must have samples of the search 

space's most promising regions and secondly the solutions must belong to basins of attractions of the locally minimal solutions.[10] 
 
To ensure that the first condition is satisfied we must have an effective construction heuristic and an appropriate length for the RCL. 

The second condition can be met by choosing a construction heuristic and local search algorithm that fits well [11]. 
 
Now for a Course time tabling problem we can use a GRASP procedure that constitutes a basic 3 step cycle that is repeated. It will first 

select a random class and assigns it resources. It then adds the next class and it will rank the options and so on. The expanding list of 

assigned lectures will be sorted with those that score the highest for the different criteria will move up the priority list, which constitutes 

the greedy part. Each subsequent lecture when added must then adapt to fit unless it scores more highly than the others in which case it 

moves up the list. In the second phase improve the list using a "local search procedure" that compares neighboring lectures and re-ranks 

them in pairs. This phase goes on till no further improvements are possible. At the end, a path re-linking strategy is used to spot the 

almost optimal solutions, which are then used to produce the final solution. "This basic cycle is repeated many times and the overall 

winning solution is returned as the final answer of the algorithm [8]. 
 
We should choose a time slot and room for a given class, then a restricted list is constructed by counting how many times the soft 

constraints are violated for each choice. When trying to insert a class into the timetable and a position does not exist, another class (or 

classes) previously scheduled is removed from the timetable to open a slot for the problem class. A feasible time slot is selected 

randomly and all conflicting lectures allocated in that time slot are removed from the timetable. If a conflicting lecture does not exist 

in time slot, a non-conflicting lecture is selected. This strategy is called explosion. 
 
For the GRASP improvement phase, a local search is used on the initial timetable solution. The GRASP iteration (initial phase and 

improvement phase) is repeated several times generating different timetables. The final solution is the best of all generated timetables. 

Three different local search strategies are presented. The neighbors are generated with 2 movements: MOVE and SWAP. The first 

reschedules a lecture in an empty time slot. The second will exchange the time slots of two lectures. The algorithm stops if n consecutive 

neighbors are generated and the objective function is not reduced. The second local search method adapts from the breadth-first 

algorithm, in which the neighborhood is not explored extensively, only k neighbors are generated and the best neighbor is chosen for 

the next iteration. The generation and exploration of the neighborhood processes are identical to first method. The depth-first strategy 

is the simplest. The third local search is a depth-first strategy with a heuristic that will lessen the violation of soft constraints. A parallel 

version of the algorithm is also made.[9]. 
 

Advantages: It is faster than other algorithms. It can also be integrated with other search techniques fairly well. 

 

Disadvantages: It requires large amount of memory because the problem instances and best solution found so far has to be stored. 

 

III. CONCLUSION 
 
Considering the above facts and also the experimental values given in numerous papers, TABU was found to outperform all other 

methods. But its complexity makes it very difficult to use it in a course timetabling problem in a short period of time. Hence we have 

decided to take the best aspects of GA and TABU and come up with an application oriented algorithm designed specifically for the 

needs of our college. 
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